
michael graf
239-822-8752

me@mgr.af

Backend Core Services
Featuring: Rails 3, Ruby 2.4, PostgreSQL, Redis

Financial Cores AnalyiticsVendors

REBAREBA

The meat is here. Goal being to create a unified experience regarless of core, vendor, or customer. The bulk of my work is here; this

is where my Rails’ core classes and methods create and parse data from and to cores, save customer data, transactions, balances,

validation, method audits (compliance), etc.

Vendors, cores, and analytic engines connect to a distributed

network via their own IPsec tunnel (TLS). Cust. data sent

and received from / to cores and vendors. Trans. methods

include telnet, ssh, http, etc.

Core / vendor data hits Rackspace, which holds DB

(Postgres), Memcache (Redis), Content (Images, UX & UI).

Rails creates a session.

Backend (core, vendor, and analytics) are all written in Ruby. Here is an example of a vendor (Check Image) Interface I wrote.

(1) Business Rules are built in a common method,

business rules are Redis key / values pairs. Benefit

being: I can change these values without a production

push / code changes via a CRUD web interface.

(2) check image parameters (listed) are received

in a parameter which is set by a transactions interface

(3) Users’ account numbers are retrieved via a

cross reference table. Account numbers can also

be replaced with other info depending on core / preference of

the customer.

(4) In this case, the vendor uses HTTP to retrieve check

images. Default params are built, some parms are added or

removed depended on the customer.

(5) The HTTPClient class (gem) is instantiated and a logger

is set to log to a customer’s log directory and file.

(6) Threads are used to retrieve images in parallel and then

send to the device. Error handling is in place (which will return

the errors to the user if there are problems).

def	initialize(parameters)

				@checkimage	=	Hash.new()

				begin

						organization	=	parameters['organization']
						raise	CommonInterfaceError,	"Required	parameter,	organization,	not	provided"	if	!organization

						urlformethods	=	parameters['urlformethods'].to_s.strip
						raise	CommonInterfaceError,	'Required	parameter,	urlformethods,	not	provided'	if	urlformethods.blank?

						businessrules																=	Commonfunctions.buildBusinessRules(parameters)
						useSequence																		=	businessrules['USESEQUENCENUMBER'].to_s.upcase	==	'TRUE'		?	true		:	false
						checkNumberZero														=	businessrules['CHECKNUMBERZERO'].to_s.upcase	==	'TRUE'				?	true		:	false
						useDocType																			=	businessrules['USEDOCTYPE'].to_s.upcase	==	'FALSE'								?	false	:	true
						useDatePosted																=	businessrules['USEDATEPOSTED'].to_s.upcase	==	'FALSE'					?	false	:	true
						replaceAccountNumberWithMICR	=	businessrules['REPLACEACCOUNTNUMBERWITHMICR']	==	'TRUE'			?	true		:	false

						account_number,	amount,	check_number,	date_posted,	sequenceNumber,	mobileUser	=	parameters['check_image'].split('|')

						MalauzaiLogger(organization.external_id,	'NotACustomerName',	'parameters',	parameters.inspect)	if	organization.is_debug_on

						#Using	Malauzai::Account	instead	of	translatekey	to	get	full	account	number	without	dashes	or	any	other	value
						account_number		=	Malauzai::Account.where(organization_id:	organization.id,	crossreference_id:	account_number).first
						account_number		=	replaceAccountNumberWithMICR	?	account_number.micr	:	account_number.account_number_decrypted
						check_number				=	0	if	check_number.blank?

						urlParams	=	Hash.new
						urlParams['docType']						=	(useSequence	&&	check_number	==	0)	?	'37'	:	'29'	#29	=>	check,	37	=>	deposits	--	PM-4973
						urlParams['acct']									=	account_number
						urlParams['amount']							=	amount
						urlParams['seq']										=	sequenceNumber	if	useSequence
						urlParams['cknum']								=	check_number
						urlParams['date_posted']		=	date_posted
						urlParams['pdate']								=	date_posted

						urlParams.delete('cknum')			if	useSequence	||	(check_number	==	0	&&	!checkNumberZero)
						urlParams.delete('docType')	if	!useDocType
						urlParams.delete('date_posted')	if	!useDatePosted

						myhttpclient	=	HTTPClient.new()
						myhttpclient.debug_dev	=	Logger.new(Commonfunctions.obtain_org_log_path(organization))	if	organization.is_debug_on

						ft	=	Thread.new	do
								local_urlParams	=	urlParams.clone
								local_urlParams['F_B']	=	local_urlParams['fb']	=	'F'
								response	=	myhttpclient.get(urlformethods,	local_urlParams)
								MalauzaiLogger(organization.external_id,	"NotACustomerName",	'Front	Image',	response.inspect)	if	organization.is_debug_on
								raise	CommonInterfaceError,	'Unable	to	load	front	of	check	image'	unless	response.ok?	&&	response.body.image?
								Base64.encode64(response.body)
						end

						bt	=	Thread.new	do
								local_urlParams	=	urlParams.clone
								local_urlParams['F_B']	=	local_urlParams['fb']	=	'B'
								response	=	myhttpclient.get(urlformethods,	local_urlParams)
								
					
								

(1)

(2)

(3)

(4)

(5)

(6)

Full Stack Personal Projects
Featuring: Rails 5, Ruby 2.4, PostgreSQL, go, Sinatra, JS, SASS, gulp
Interviewing guide WebApp:

This project grew from a simple static site to a Rails project with polymorphic associations

and mailers very quickly. The customer (now a good friend of mine!) wanted a way to

streamline the creation of interview guides for his company.

Employees are able to login to the web app, and build interview guides based on predefined

questions (mandated) questions, and their own custom questions. Questions, users, positions,

question categories, etc. are all database driven objects with attributes and associations.

The interview guide above was generated with dynamic content, SASS, and database driven

flows. Let me know if you want to see a complete interview application (source included),

or like a visual demo. I can demo this in person.

module	PositionsHelper

		def	print_layout
				
				allQuestions	=	Array.new
				
				valueBasedQuestions	=	Array.new
				@position.questions.joins(:category).where(:categories	=>	{:value_based	=>	[true]}).where(:categories	=>	{:is_global_use	=>	[false]}).each	do	|question|
						h	=	Hash.new
						h[:category]	=	question.category.content
						h[:question]	=	question.content
						valueBasedQuestions	<<	h
				end
				
				userQuestions	=	Array.new
				@position.questions.joins(:category).where(:categories	=>	{:value_based	=>	[false]}).where(:categories	=>	{:is_global_use	=>	[false]}).each	do	|question|
						h	=	Hash.new
						h[:category]	=	question.category.content
						h[:question]	=	question.content
						userQuestions	<<	h
				end

				globalUseQuestions	=	Array.new
				@position.questions.joins(:category).where(:categories	=>	{:is_global_use	=>	[true]}).each	do	|question|
						h	=	Hash.new
						h[:category]	=	question.category.content
						h[:question]	=	question.content
						globalUseQuestions	<<	h
				end

				allQuestions	<<	valueBasedQuestions.group_by{|h|	h[:category]}.each{|_,	v|	v.replace(v.map{|h|	h[:question]})}
				allQuestions	<<	userQuestions.group_by{|h|	h[:category]}.each{|_,	v|	v.replace(v.map{|h|	h[:question]})}
				allQuestions	<<	globalUseQuestions.group_by{|h|	h[:category]}.each{|_,	v|	v.replace(v.map{|h|	h[:question]})}

		end
.	.	.	.

(1)

(2)

(1) This is a helper method that I use to build the finished interview guide, between (1) and (2) I’m gathering question
types from Active Record, putting them in order and pushing them to a questions array. I was the only dev with this one.

(2) Each question array is grouped based on their category, and then each question is added to an array which is in a
array of hashes, where each hash key is the category.

Recreational Projects Hacks
Featuring: Ruby 2.4, PostgreSQL, Node, Siri, Asterisk, spammers.

Background: I just moved to Austin and
started my Rails job the very week I
wrote this script. I was staying with my
uncle at an apartment complex down-
town and didn’t have the money for
$33.00 daily parking. I found out that
residents are issued 24 hr parking
passes and decided to take some time
to correctly replicate them by reverse
engineering the ‘check’ digits in the
barcode. It worked, I parked for free
and didn’t tell a soul. I moved into my
apartment a few days later.

After purchasing a new domain I started to receive 20+ robo-calls a month
to my cell phone. It had to end. I used an open source telephony project
(Asterisk) to build a simple mitigation technique to end the calls.

Type somethingdef	orig
		stat	=	'0600'
		gen	=	(5001..8001).to_a.sample
		return	"#{stat}#{gen}"
end

def	gen_key(n)
		orig	=	n.dup
		gs	=	n.gsub!(/0+/,'')
		num	=	gs.to_s.chars.map(&:to_i).reduce(:+)
		f	=	(num	*	854)	%	1000
		if	f	<=	1000
				f	=	"0#{f}"
		end
		return	"#{orig}#{f}"
end

code	=	gen_key(orig)
url	=	"realURLHere”
p	url

exit

The system:

incoming call

Deny call. Call Forwarding is enabled;
forwarded to Asterisk
inbound trunk.

Virtual extension answers

IVR (Virtual Assistant) asks challenge
question. ie: “Please dial 9 in order to
complete this call”

if success: route call back to phone,
change Caller ID to Asterisk
server (noting validation).

X
if challenge fails or times out,
call is disconnected. Or, a more
sinister approach can be taken and the
spammer can be placed on hold with an
ever increasing volume.

More hacks available upon request.

